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The symmetry point groups for all combinatorially non-isomorphic 9- and 10-

hedra (2606 and 32300, respectively) are contributed in the paper for the ®rst

time. The most symmetrical polyhedra of 3 to 32 automorphism group orders (50

and 187, respectively) are drawn in the Schlegel projections and characterized

by the facet symbols and symmetry point groups.

1. Introduction

The symmetry of 4- to 11-hedra was discussed in our papers

(Voytekhovsky, 1999, 2000, 2001a) with some disagreements between

the previous data being eliminated. But only simple (three facets

meet at each vertex) 9-, 10- and 11-hedra were studied there. Here,

we contribute the symmetry point groups for all not simple non-

isomorphic 9- and 10-hedra for the ®rst time. For the sake of

completeness, the symmetry statistics for the simple 9- and 10-hedra

are also included in the tables.

2. Generation and characterization of polyhedra

We generate the polyhedra as their Schlegel projections. This

approach is obviously justi®ed by the Steinitz theorem (every

3-connected planar graph can be realized as a 3-polyhedron) and the

Mani theorem (every combinatorial automorphism of a 3-polyhedron

is af®nely realizable). That is, there exists to each Schlegel diagram a

3-space realization of a polyhedron such that its edge graph is

isomorphic to the Schlegel diagram while its symmetry point group is

isomorphic to the automorphism group of the Schlegel diagram.

The polyhedra were generated by the Fedorov (1893) recurrence

algorithm brie¯y described by Engel (1994) and Voytekhovsky

(2001b). As the simple 9- and 10-hedra were previously found, we

used them to generate not simple polyhedra by the reduction

operation ! which is known to reduce any edge v1±v2 (joining two

adjacent vertices v1 and v2) if all facets containing v1 but not v2 have

no common vertex with any facet containing v2 but not v1 (Fedorov,

1893, p. 281). Applying ! step by step in all possible ways, we reduced

the number of vertices from 14 to 7 at 9-hedra and from 16 to 7 at

10-hedra. The generated polyhedra were compared in the Schlegel

projections. Afterwards, the combinatorially non-isomorphic poly-

hedra were characterized by their facet symbols and symmetry point

groups. A facet symbol [n3n4 . . . nmax] shows the sequence of numbers

of triangular, quadrilateral etc. facets at a polyhedron.

3. Results and discussion

The automorphism group order and symmetry point group statistics

of 9- and 10-hedra are in given Figs. 1 and 2. The most symmetrical

Figure 1
The automorphism group order (a.g.o.) and symmetry point group (s.p.g.) statistics
of 9-hedra.

Figure 2
The automorphism group order (a.g.o.) and symmetry point group (s.p.g.) statistics
of 10-hedra.



polyhedra with the automorphism group orders being not less than 3

are given in the Schlegel projections in Figs. 3 and 4. Their facet

symbols (given in square brackets) and symmetry point groups

(shown by bold symbols) are as follows.

9-hedra: [81] mm2: 1, 2. [63] 3m: 3, 4; �6m2: 5. [8001] mm2: 6. [45]

4mm: 7, 8. [800001] 8mm: 9. [27] mm2: 10, 11. [432] mm2: 12. [4401]

mm2: 13±15. [620001] mm2: 16. [09] �6m2: 17. [2601] mm2: 18. [333] 3:

19; 3m: 20, 21. [414] mm2: 22. [4221] mm2: 23. [440001] mm2: 24, 25.

[072] mm2: 26, 27. [0801] mm2: 28. [234] mm2: 29. [260001] mm2: 30.

[4041] mm2: 31±33. [4122] mm2: 34. [4203] mm2: 35. [054] 4mm: 36.

[0621] mm2: 37. [2241] mm2: 38. [2322] mm2: 39. [25002] mm2: 40.

[404001] 4mm: 41. [036] �6m2: 42. [0441] mm2: 43. [0522] mm2: 44.

[0603] �6m2: 45. [07002] 14m2: 46. [2304] mm2: 47. [250002] mm2: 48.

[3033] 3m: 49. [402201] mm2: 50.

10-hedra: [10] mm2: 1; 3m: 2, 3; 10m2: 4. [82] mm2: 5, 6; 2/m: 7; �42m:

8; �82m: 9. [64] mm2: 10±14. [802] mm2: 15, 16. [46] 3: 17; 222: 18; mm2:

19±26; 2/m: 27±29; 3m: 30±33. [622] mm2: 34±38; 2/m: 39. [6301] 3: 40;

mm2: 41; 3m: 42, 43. [703] 3: 44; 3m: 45±47. [9000001] 9m: 48. [28]

mm2: 49±52. [442] mm2: 53±59. [6202] mm2: 60, 61. [0,10] 222: 62;

4/mmm: 63; �5m: 64. [262] mm2: 65±71; 2/m: 72. [2701] mm2: 73. [424]

222: 74; mm2: 75±77; �4: 78; 2/m: 79, 80; 4mm: 81. [4402] 222: 82; mm2:

83±85; 2/m: 86±88; �42m: 89. [450001] mm2: 90; 4mm: 91. [6022] mm2:

92, 93. [082] mm2: 94. [0901] 3m: 95. [163] 3m: 96±98. [244] mm2: 99±

101. [2602] mm2: 102, 103. [3331] 3: 104; 3m: 105, 106. [3600001] 3m:

107. [406] 3: 108; 3m: 109, 110. [4222] mm2: 111±113. [4303] 3: 114; 3m:

115±117. [6004] 3: 118; mm2: 119; 3m: 120. [60202] mm2: 121.

[6030001] 3m: 122. [064] 222: 123; mm2: 124, 125; 2/m: 126. [0802]

mm2: 127. [226] mm2: 128±130; 2/m: 131. [2341] mm2: 132. [2422]

mm2: 133, 134. [26002] 2/m: 135. [260101] mm2: 136. [4042] mm2: 137;

2/m: 138; mmm: 139. [4123] mm2: 140. [414001] mm2: 141, 142. [4204]

mm2: 143. [42202] mm2: 144±146. [60022] mm2: 147. [0622] mm2: 148,

149. [208] mm2: 150. [2242] mm2: 151, 152. [24202] mm2: 153±155.

[260002] mm2: 156. [4024] mm2: 157, 158. [42022] mm2: 159. [422002]

mm2: 160. [028] �82m: 161. [0361] 3m: 162. [0442] mmm: 163. [0523]

mm2: 164. [0604] �42m: 165. [06202] mm2: 166, 167. [080002] 8/mmm:

168. [1333] 3m: 169, 170. [2224] mm2: 171; 2/m: 172. [22402] 2/m: 173.

[224101] mm2: 174. [2305] mm2: 175. [24022] mm2: 176. [242002]

mm2: 177. [2600002] mm2: 178. [33013] 3m: 179, 180. [3303001] 3: 181.

[4006] mmm: 182; �43m: 183. [40222] mm2: 184. [40303] 3m: 185.

[410401] 4mm: 186. [420202] mm2: 187.

The automorphism group order statistics agree with the data given

in Duijvestijn & Federico (1981). The symmetry point group statistics

are contributed here for the ®rst time. As for 4- to 8-hedra and simple

9- to 11-hedra (Voytekhovsky, 2001a), the shapes of 1, m, 2 and mm2

symmetry also prevail among not simple 9- and 10-hedra. This

tendency appears to be a general property of the abstract polyhedra

variety. The number of polyhedra rapidly drops with growing

symmetry so that trivial (of 1 symmetry point group) shapes form the

overwhelming majority. The depressing fact is that it cannot be

classi®ed in the framework of the symmetry theory. We need some

new approaches to do this.

4. Conclusions

Up to now, the whole variety of 4- to 10-hedra and simple 11-hedra is

generated, drawn in the Schlegel projections and characterized by the

facet symbols, automorphism group orders and symmetry point

groups. Their overwhelming majority is found to belong to the trivial

symmetry point group. The next steps are to generate and char-

acterize in the same way all not simple 11-hedra, simple 12- and 13-

hedra, and to ®nd some methods to classify the trivial shapes of the

same Euler's genera (i.e. class of polyhedra with the same numbers of

facets, edges and vertices). They will be discussed in our next papers.

The authors acknowledge great bene®t from the highly skilled

comments made by the referee.
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Figure 3
The most symmetrical 9-hedra in the Schlegel projections. See text for facet symbols and symmetry point groups.
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Figure 4
The most symmetrical 10-hedra in the Schlegel projections. See text for facet symbols and symmetry point groups.
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Figure 4 (continued)


