Acta Crystallographica Section A

Foundations of Crystallography

ISSN 0108-7673

Received 21 January 2002
Accepted 26 March 2002

On the symmetry of 9- and 10-hedra

${ }^{\text {a }}$ Laboratory for Mathematical Investigations in Crystallography, Mineralogy and Petrography, High Technologies Centre, Kola Branch of Petrozavodsk State University, Russian Academy of Sciences, 14 Fersman Street, 184209 Apatity, Russia, and ${ }^{\text {b }}$ Laboratory for Platinum Group Elements Ore Genesis, Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, 184209 Apatity, Russia. Correspondence e-mail: voyt@geoksc.apatity.ru

The symmetry point groups for all combinatorially non-isomorphic 9- and 10hedra (2606 and 32300, respectively) are contributed in the paper for the first time. The most symmetrical polyhedra of 3 to 32 automorphism group orders (50 and 187, respectively) are drawn in the Schlegel projections and characterized by the facet symbols and symmetry point groups.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved
(2001b). As the simple 9- and 10-hedra were previously found, we used them to generate not simple polyhedra by the reduction operation ω which is known to reduce any edge $v_{1}-v_{2}$ (joining two adjacent vertices v_{1} and v_{2}) if all facets containing v_{1} but not v_{2} have no common vertex with any facet containing v_{2} but not v_{1} (Fedorov, 1893, p. 281). Applying ω step by step in all possible ways, we reduced the number of vertices from 14 to 7 at 9 -hedra and from 16 to 7 at 10 -hedra. The generated polyhedra were compared in the Schlegel projections. Afterwards, the combinatorially non-isomorphic polyhedra were characterized by their facet symbols and symmetry point groups. A facet symbol $\left[n_{3} n_{4} \ldots n_{\text {max }}\right]$ shows the sequence of numbers of triangular, quadrilateral etc. facets at a polyhedron.

3. Results and discussion

The automorphism group order and symmetry point group statistics of 9 - and 10 -hedra are in given Figs. 1 and 2. The most symmetrical

Figure 2
The automorphism group order (a.g.o.) and symmetry point group (s.p.g.) statistics of 10 -hedra.
polyhedra with the automorphism group orders being not less than 3 are given in the Schlegel projections in Figs. 3 and 4. Their facet symbols (given in square brackets) and symmetry point groups (shown by bold symbols) are as follows.

9-hedra: [81] mm2: 1, 2. [63] 3m: 3, 4; $\mathbf{6} \mathbf{m 2}$: 5. [8001] mm2: 6. [45]
4mm: 7, 8. [800001] 8mm: 9. [27] mm2: 10, 11. [432] mm2: 12. [4401] mm2: 13-15. [620001] mm2: 16. [09] 6-m2: 17. [2601] mm2: 18. [333] 3: 19; 3m: 20, 21. [414] mm2: 22. [4221] mm2: 23. [440001] mm2: $24,25$. [072] mm2: 26, 27. [0801] mm2: 28. [234] mm2: 29. [260001] mm2: 30. [4041] mm2: 31-33. [4122] mm2: 34. [4203] mm2: 35. [054] 4mm: 36. [0621] mm2: 37. [2241] mm2: 38. [2322] mm2: 39. [25002] mm2: 40. [404001] 4mm: 41. [036] $\overline{\mathbf{6}} \mathbf{m 2}: 42$. [0441] mm2: 43. [0522] mm2: 44. [0603] $\mathbf{6} \mathbf{m 2}$: 45. [07002] $\overline{\mathbf{1 4}} \mathbf{m 2}: 46$. [2304] mm2: 47. [250002] mm2: 48. [3033] 3m: 49. [402201] mm2: 50.

10-hedra: [10] mm2: $1 ; \mathbf{3 m}: 2,3 ; \overline{10} \mathbf{m 2}: 4$. [82] mm2: 5, 6; 2/m: 7; $\overline{\mathbf{4} 2 m}$: 8; $\overline{\mathbf{8} 2 m}: 9$. [64] mm2: 10-14. [802] mm2: 15, 16. [46] 3: 17; 222: 18; mm2: 19-26; 2/m: 27-29; 3m: 30-33. [622] mm2: 34-38; 2/m: 39. [6301] 3: 40; mm2: 41; 3m: 42, 43. [703] 3: 44; 3m: 45-47. [9000001] 9m: 48. [28] mm2: 49-52. [442] mm2: 53-59. [6202] mm2: 60, 61. [0,10] 222: 62; 4/mmm: 63; $\overline{\mathbf{5}} \mathbf{m}: 64$. [262] mm2: 65-71; 2/m: 72. [2701] mm2: 73. [424] 222: 74; mm2: 75-77; $\overline{\mathbf{4}}: 78$; 2/m: 79, 80; 4mm: 81. [4402] 222: 82; mm2: 83-85; 2/m: 86-88; $\overline{\mathbf{4} 2 \mathrm{~m}: ~ 89 . ~[450001] ~ m m 2: ~ 90 ; ~ 4 m m: ~ 91 . ~[6022] ~ m m 2: ~}$ 92, 93. [082] mm2: 94. [0901] 3m: 95. [163] 3m: 96-98. [244] mm2: 99101. [2602] mm2: 102, 103. [3331] 3: 104; 3m: 105, 106. [3600001] 3m: 107. [406] 3: 108; 3m: 109, 110. [4222] mm2: 111-113. [4303] 3: 114; 3m: 115-117. [6004] 3: 118; mm2: 119; 3m: 120. [60202] mm2: 121. [6030001] 3m: 122. [064] 222: 123; mm2: 124, 125; 2/m: 126. [0802] mm2: 127. [226] mm2: 128-130; 2/m: 131. [2341] mm2: 132. [2422] mm2: 133, 134. [26002] 2/m: 135. [260101] mm2: 136. [4042] mm2: 137; 2/m: 138; mmm: 139. [4123] mm2: 140. [414001] mm2: 141, 142. [4204] mm2: 143. [42202] mm2: 144-146. [60022] mm2: 147. [0622] mm2: 148, 149. [208] mm2: 150. [2242] mm2: 151, 152. [24202] mm2: 153-155. [260002] mm2: 156. [4024] mm2: 157, 158. [42022] mm2: 159. [422002] mm2: 160. [028] $\overline{\mathbf{8} 2 m}: 161$. [0361] 3m: 162. [0442] mmm: 163. [0523] mm2: 164. [0604] $\overline{\mathbf{4} 2 m: ~ 165 . ~[06202] ~ m m 2: ~ 166, ~ 167 . ~[080002] ~ 8 / m m m: ~}$ 168. [1333] 3m: 169, 170. [2224] mm2: 171; 2/m: 172. [22402] 2/m: 173.
[224101] mm2: 174. [2305] mm2: 175. [24022] mm2: 176. [242002] mm2: 177. [2600002] mm2: 178. [33013] 3m: 179, 180. [3303001] 3: 181. [4006] mmm: 182; $\overline{\mathbf{4} 3 \mathrm{~m}: ~ 183 . ~[40222] ~ m m 2: ~ 184 . ~[40303] ~ 3 m: ~} 185$. [410401] 4mm: 186. [420202] mm2: 187.

The automorphism group order statistics agree with the data given in Duijvestijn \& Federico (1981). The symmetry point group statistics are contributed here for the first time. As for 4 - to 8 -hedra and simple 9- to 11-hedra (Voytekhovsky, 2001a), the shapes of $\mathbf{1}, \mathbf{m}, \mathbf{2}$ and $\mathbf{~ m m} 2$ symmetry also prevail among not simple 9 - and 10 -hedra. This tendency appears to be a general property of the abstract polyhedra variety. The number of polyhedra rapidly drops with growing symmetry so that trivial (of $\mathbf{1}$ symmetry point group) shapes form the overwhelming majority. The depressing fact is that it cannot be classified in the framework of the symmetry theory. We need some new approaches to do this.

4. Conclusions

Up to now, the whole variety of 4 - to 10 -hedra and simple 11-hedra is generated, drawn in the Schlegel projections and characterized by the facet symbols, automorphism group orders and symmetry point groups. Their overwhelming majority is found to belong to the trivial symmetry point group. The next steps are to generate and characterize in the same way all not simple 11-hedra, simple 12- and 13hedra, and to find some methods to classify the trivial shapes of the same Euler's genera (i.e. class of polyhedra with the same numbers of facets, edges and vertices). They will be discussed in our next papers.

The authors acknowledge great benefit from the highly skilled comments made by the referee.

Figure 3
The most symmetrical 9-hedra in the Schlegel projections. See text for facet symbols and symmetry point groups.

Figure 4
The most symmetrical 10 -hedra in the Schlegel projections. See text for facet symbols and symmetry point groups.

Figure 4 (continued)

References

Duijvestijn, A. J. W. \& Federico, P. J. (1981). Math. Comput. 37, 156, 523-532. Engel, P. (1994). Proc. Russ. Mineral. Soc. 3, 20-25.
Fedorov, E. S. (1893). Proc. R. Mineral. Soc. St Petersburg, 30, 241-341. (In Russian.)

Voytekhovsky, Y. L. (1999). Granulomorphology: Reducible 4-... 8-hedra, Simple 9- and 10-hedra. Apatity: Kola Science Centre.
Voytekhovsky, Y. L. (2000). Granulomorphology: Simple 11-hedra. Apatity: Kola Science Centre.
Voytekhovsky, Y. L. (2001a). Acta Cryst. A57, 112-113.
Voytekhovsky, Y. L. (2001b). Acta Cryst. A57, 475-477.

